Chem. Ber. 103, 2828-2835 (1970)

André J. Hubert*) und Hans Reimlinger

Thermolyse und Photolyse von Benzotriazolyl-(1)-Derivaten

Aus Union Carbide European Research Associates, B-1180 Brüssel

(Eingegangen am 13. April 1970)

Photolyse und Thermolyse verschiedener Heterocyclen, substituiert mit einer Benzotriazolyl-(1)-Gruppe in Nachbarstellung zum Ringstickstoff (3a - k, 4a - c), wurden untersucht. Die Photolyse lieferte im Falle der Benzimidazol-Derivate Benzimidazo[1.2-*a*]benzimidazole (5), in allen anderen Fällen verlief sie undefiniert. Bei der Thermolyse in Polyphosphorsäure entstanden nur in 4 Fällen definierte Produkte, und zwar die kondensierten Benzimidazole 7-10. Die Funktion der Phosphorsäure bei diesen Pyrolysen wurde untersucht.

Thermolysis and Photolysis of 1-Benzotriazolyl Derivatives

The photolysis and thermolysis of different heterocycles containing a 1-benzotriazolyl substituent adjacent to their ring nitrogens (3a-k, 4a-c) have been studied. The photolysis of benzimidazole derivatives gave benzimidazo[1,2-a]benzimidazoles (5). In all other cases undefined decomposition products were obtained. Thermolysis in polyphosphoric acid afforded well-defined products only in 4 cases; these were also condensed benzimidazoles (7-10). The function of phosphoric acid in these pyrolyses has been studied.

Heterocyclen, substituiert mit einer Benzotriazolyl-Gruppe in α -Stellung zum Ringstickstoff (**B**), verlieren beim Erhitzen in Phosphorsäure oder in Gegenwart von Lewis-Säuren Stickstoff und gehen analog zur Graebe-Ullmann-Synthese fast ausschließlich in 2.3-kondensierte Indole (**C**) über¹). Bei der Photolyse entstehen dagegen kondensierte Benzimidazole (**A**)²). Diese Regel wurde jedoch vom 1-[Benzotriazolyl-(1)]isochinolin und vom 2-[Benzotriazolyl-(1)]-chinolin durchbrochen, welche *in beiden Fällen* dasselbe Produkt vom Typ A bzw. Typ C liefern²).

lm folgenden werden Photolyse und Thermolyse weiterer Benzotriazolyl-(1)-Derivate (3a-k und 4a-c) beschrieben. Sie wurden aus Benzotriazol (1) und den bekannten chlor-substituierten Heterocyclen 2a-g, i und k sowie aus 2-Chlor-

^{*)} Jetzige Adresse: Universität Lüttich, Institut de Chimie Physique, Sart Tilman, B-4000 Liège.

W. Lawson, W. H. Perkin, Jr. und R. Robinson, J. chem. Soc. [London] 125, 626 (1924); siehe auch R. A. Abramovitch und I. D. Spenserin, Advances in Heterocyclic Chemistry, Bd. 3, S. 128, Academic Press, New York 1964.

²⁾ A. Hubert, J. chem. Soc. [London] C 1969, 1334.

benzimidazol oder dessen N-Methyl- oder N-Benzyl-Derivat durch Erhitzen ohne Solvens auf $\sim 150^{\circ}$ in Ausbeuten von 10 -80°_{0} dargestellt. Im Falle des 6-Chlor-3methoxy-pyridazins erfolgte unter diesen Bedingungen gleichzeitig Ätherspaltung zum Hydroxyderivat **3h**. Bei Verwendung von *o*-Phenylendiamin anstelle des Benzotriazols nahm die Reaktion in den meisten Fällen einen komplexen Verlauf³).

Die Bestrahlung der 2-[Benzotriazolyl-(1)]-benzimidazole $(4\mathbf{a} - \mathbf{c})$ mit pyrexgefiltertem UV-Licht einer Quecksilber-Hochdrucklampe²⁾ während 30-60 Min. bei 20° lieferte die Benzimidazo[1.2-*a*]benzimidazole **5a** (25%), **5b** (30%) und **5c** (30%). Eine Cyclisierung durch Einschiebung in die Methyl- bzw. Benzylgruppe zu **6** trat nicht ein, denn **5b** und **5c** zeigten keine NH-Bande im IR und ihre UV-Spektren waren dem von **5a** sehr ähnlich (s. Tab. 4). Die Benzotriazolyl-(1)-Derivate **3a**-**k** lieferten bei der Bestrahlung mit gefiltertem UV-Licht undefinierte Zersetzungsprodukte.

Beim Erhitzen in Polyphosphorsäure auf $\sim 150^{\circ}$ verloren 3b, c, d und h Stickstoff unter Bildung kondensierter Derivate des Typs A; 3a, e, f, i und k ergaben undefinierte Zersetzungsprodukte.

3) H. Reimlinger und J. J. M. Vandewalle, unveröffentlichte Versuche.

Das Fehlen der NH-Bande im IR-Spektrum des in 60 proz. Ausbeute erhaltenen Thermolyseproduktes von 3b schließt die linear kondensierte Alternativstruktur zugunsten der Struktur 7 aus. Auch beim Zersetzungsprodukt von 3c (30% Ausb.) fehlt eine NH-Schwingung. Das UV-Spektrum zeigt außerdem keinerlei Ähnlichkeit mit dem des Tetraaza-benz[d]aceanthrylens⁴) (11). Wir bevorzugen daher Struktur 8

vor 12, die auf eine Insertion in 5-Stellung des s-Triazolo[3.4-a]isochinolins zurückginge. Die Bildung von 8 ist allerdings überraschend, denn es gelang bisher nicht, s-Triazolo[3.4-a]isochinoline mit einem in 2.3-Stellung kondensierten Fünfring durch 1.5-Dipolare Cyclisierung⁵⁾ oder verschiedene Cyclokondensationen darzustellen⁵⁾. Das aus 3d entstehende Fragment ist symmetrisch und kann intramolekular nur zum Pyrimido[1.2-a]benzimidazol (9) (Typ A) cyclisieren.

Wegen gleichzeitiger Anwesenheit einer OH-Absorption (bzw. NH-Absorption im Tautomeren) im Bereich infraroter NH-Schwingungen des Zerfallsproduktes von **3h** (50% Ausb.) bedarf es hier eines anderen Kriteriums zur Strukturzuordnung. Die Signale der Pyridazin-Protonen im NMR-Spektrum (τ 2.92 und 1.93) sowie ihre (den Olefinen angenäherte) Kopplungskonstante von 9.8 Hz stehen mit der Struktur **10** im Einklang. In Deuterofluoressigsäure wird nur 1 Proton ausgetauscht.

Die Erwartung eines dreifach kondensierten s-Triazins bei der Thermolyse von 2.4.6-Tris-[benzotriazolyl-(1)]-s-triazin (3g) erfüllte sich nicht, sie verlief undefiniert, ebenso die Thermolyse des 1.2-Benzisothiazol-Derivates 3a, im Gegensatz zum 1.3-Isomeren²⁾. Während 4a - c durch Photolyse in 5a - c übergeführt wurden, lieferten deren Thermolysen keine definierten Reaktionsprodukte. Auch die Thermolysen und Photolysen von 3e und k verliefen undefiniert. Die Spaltung von 3i wird weiter unten diskutiert.

Diese sowie frühere Ergebnisse zeigen, daß der Verlauf der Thermolyse und Photolyse von Verbindungen des Typs **B** keiner generellen Regel gehorcht. *Huisgen*⁶) wies bereits darauf hin, daß die Thermolyse der N-Acyl-v-triazole im Vergleich zur Spaltung der N-Acyltetrazole bei Temperaturen erfolgt, die etwa 200° höher liegen, und führte die unterschiedliche Thermostabilität beider Ringsysteme auf die verschiedenen Energieniveaus der Zwischenstufen zurück. Während im Falle der N-Acyl-tetrazole ein "All-octett"-1.5-Dipol⁵) entsteht, bildet sich beim N-Acyl-v-triazol ein "1.5-Dipol" mit Kohlenstoff-Sextett als Zwischenstufe.

⁴⁾ H. Reimlinger, W. R. F. Lingier und J. J. M. Vandewalle, unvcröffentlichte Versuche.

⁵⁾ H. Reimlinger, Chem. Ber. 103, 1900 (1970).

⁶⁾ R. Huisgen und M. Seidel, Chem. Ber. 94, 2510 (1961).

Niedrigere Temperatur der Stickstoffabspaltung und höhere Selektivität werden durch Anwesenheit von Phosphorsäure erreicht. Die Benzotriazolyl-(1)-Derivate 3a-k und 4a-c verloren in Polyphosphorsäure bereits bei 150° rasch 1 Mol Stickstoff, im inerten Solvens dagegen erst bei viel höheren Temperaturen. In Biphenyl (Sdp. 255°) beobachteten wir z. B. im Falle von 3d bei 250° keine Gasentwicklung, in Phenanthren erst oberhalb 270°. Diese Pyrolyse führte in der Hauptsache zu polymeren, dunklen Zersetzungsprodukten, die dünnschichtchromatographisch nachweisbare Spuren an Verbindungen des Typs C oder A enthielten. Zugabe von Polyphosphorsäure bewirkte keine Stickstoffabspaltung, da sie in den hochsiedenden, inerten Solventien nicht löslich ist. Fügten wir jedoch ein Gemisch aus Phosphorsäuretributylester und Polyphosphorsäure oder Orthophosphorsäure (89 proz.; d = 1.75) zum inerten Solvens (z. B. 1-Methyl-naphthalin), so erlitt z. B. 3d im einphasigen System bereits bei 135° Zersetzung unter lebhafter Stickstoffentwicklung, und wir isolierten 42% 9.

Dabei mußte jedoch das molare Verhältnis Säure/Ester ≥ 1 sein. Bei zu hoher Esterkonzentration traten Nebenreaktionen unter Dunkelfärbung in den Vordergrund. Die RG der Stickstoffentbindung hing vom molaren Verhältnis Säure/Benzotriazolyl-Derivat ab. War letzteres <1, so fiel sie relativ schnell auf 0. Beim Erhitzen von 3d in Polyphosphorsäure war die Stickstoffentwicklung bereits bei 120° sichtbar; in Trichlorcssigsäure dagegen erfolgte Spaltung ohne Stickstoffentwicklung unter Bildung eines Vielkomponenten-Gemisches, welches chromatographisch nicht getrennt werden konnte. Beim Siedepunkt der Essigsäure blieb 3d praktisch unverändert. Katalytische Mengen von Trichloressigsäure oder molare Verhältnisse Trichloressigsäure/Benzotriazolyl-Derivat von 0.75 oder 6 vermochten bei 150-200° keine Stickstoffentwicklung hervorzurufen. Wir isolierten neben geringen Mengen Ausgangsprodukt ausschließlich schwarze, viskose Zersetzungsprodukte.

Diese Ergebnisse lassen sich am besten mit einer Protonierung des Benzotriazolyl-Derivates deuten. Eine heterolytische Abspaltung einer Stickstoffmolekel wird durch die positive Ladung am Ring-Stickstoff der Ammoniumstrukturen erleichtert. Mit Chloressigsäure erfolgt vielleicht "Umacylierung" in Acyl-benzotriazol und α -Hydroxy-Heterocyclus, die z. T. Folgereaktionen unterliegen können.

Diese Spaltung wurde mit Polyphosphorsäure auch beim 3-Phenyl-5-[benzotriazolyl-(1)]-1.2.4-oxadiazol (3i) beobachtet. Im Hinblick auf die bekannte⁷⁾, äußerst leichte nucleophile Substituierbarkeit in 5-Stellung des 1.2.4-Oxadiazols war die Bildung von 5-Oxo-3-phenyl-4.5-dihydro-1.2.4-oxadiazol (13) aus 3i nicht überraschend.

⁷⁾ C. Moussebois und F. Eloy, Helv. chim. Acta 47, 838 (1964).

Beim Versuch, aus 1 und Bromcyan 1-Cyan-benzotriazol darzustellen, erhielten wir an dessen Stelle das noch unbekannte Ketimin 14.

Für die Aufnahme und Diskussion der NMR-Spektren danken wir Herrn Dipl.-Ing. *R. Merényi*, E. R. A., Brüssel. Herrn Dr. *F. Eloy*, E. R. A., Brüssel, danken wir für die Überlassung von Substanzen.

Beschreibung der Versuche

(Mitbearbeitet von M. L. Hubert und L. Kumps)

Die Schmpp. sind unkorrigiert. Die Registrierung der IR-Spektren (KBr) erfolgte mit einem Perkin-Elmer-Gerät PE 21, die der NMR-Spektren mit einem Gerät Varian A 60 (Tetramethylsilan als innerer Standard) und die Aufnahme der UV-Spektren mit einem Gerät Cary 14. Die Elementaranalysen wurden von Herrn F. E. Goes in unserem Institut nach der Ultramikro-Schnellmethode⁸⁾ durchgeführt.

1-Substituierte Benzotriazole (3a-k, 4a-c)

Allgemeine Arbeitsweise: Äquimolare Mengen von Benzotriazol (1) und Chlor-Derivat 2a-k, 2-Chlor-benzimidazol sowie dessen 1-Methyl- und 1-Benzyl-Derivat erwärmte man, bis Chlorwasserstoff entwich (~150°). Bei dieser Temp. erhitzte man bis zum Aufhören der HCl-Entwicklung (2 Min. bis 1 Stde.) und kristallisierte das Rohprodukt aus Äthanol um. Ausbb., Schmpp. und Analysendaten sind in Tab. 1, Absorptionsmaxima der UV- und IR-Spektren in Tab. 2 aufgeführt.

Die Photolyse der Benzotriazolyl-(1)-Derivate wurde an anderer Stelle beschrieben²⁾, Bestrahlungsdauer 30-60 Min. bei 20°. Ausbb., Schmpp. und Analysenwerte sind in Tab. 3, UV- und IR-Absorptionen in Tab. 4 aufgeführt.

Thermolyse der Benzotriazolyl-(1)-Derivate in Polyphosphorsäure

Allgemeine Arbeitsweise: Die Benzotriazolyl-Derivate (3a-k, 4a-c) löste man in Polyphosphorsäure (~5 ccm/g) und erwärmte auf 140–150° bis zum Aufhören der Stickstoffentwicklung. Danach goß man die Lösung in Wasser, neutralisierte mit verd., wäßriger NH_3 -Lösung und filtrierte den Niederschlag ab oder extrahierte mit Äther, wenn sich das Produkt als Öl abschied. Ausbb., Schmpp. und Analysenwerte s. Tab. 5; Spektraldaten s. Tab. 6.

- ¹¹⁾ G. S. Sidhu, S. Naqui und D. S. Iyengar, J. heterocycl. Chem. 3, 158 (1966).
- ¹²⁾ Org. Syntheses, Coll. Vol. IV, S. 182 (1963).
- ¹³⁾ O. Seide, Ber. dtsch. chem. Ges. 57, 1802 (1924).
- 14) E. A. Ingold und F. D. Popp, J. heterocycl. Chem. 4, 523 (1967).
- ¹⁵⁾ O. Diels, Ber. dtsch. chem. Ges. 32, 691 (1899).
- ¹⁶⁾ J. Druey, K. Meier und K. Eichenberger, Helv. chim. Acta 37, 121 (1954).
- ¹⁷⁾ T. Fujita, T. Fujii und A. Ide, J. pharmac. Soc. Japan [Yakugaku Zasshi] 84, 1061 (1964), C. A. 62, 5270 (1965).
- 18) F. Eloy und A. Deryckere, Bull. Soc. chim. belges, im Druck.
- 19) A. Ricci und P. Vivarelli, Gazz. chim. ital. 97, 758 (1967).
- ²⁰⁾ N. P. Bednyagina und I. Y. Postovskii, Zhur. Obschei. Khim. 30, 1431 (1960), C. A. 55, 1586 (1961).

⁸⁾ W. Walisch, Chem. Ber. 94, 2314 (1961).

⁹⁾ A. Reissert, Ber. dtsch. chem. Ges. 61, 1680 (1928).

¹⁰⁾ H. Reimlinger, Publikation in Vorbereitung.

Ausgangsprodukt	Endprodukt	Ausb. (%)	Schmp.	Summenformel (MolGew.)	H	Elementa C	ranalys H	z
3-Chlor-1.2-benz- isothiazol (2a) ⁹⁾	3-[Benzotriazoly]-(1)]- 1.2-benzisothiazol (3a)	15	162°	C ₁₃ H ₈ N ₄ S (252.2)	Ber. Gef.	61.90 61.36	3.20 3.46	22.21 22.20
5-Chlor-s-triazolo- [2.3-a]pyrimidin (2 b) ¹⁰⁾	5-[Benzotriazolyl-(1)]-s-triazolo- [2.3-a]pyrimidin (3 b)	50	290°	$C_{17}H_7N_7$ (237.2)	Ber. Gef.	55.69 55.70	2.97 3.00	41.34 41.40
3-Chlor-s-triazolo- [3.4-a]isochinolin (2c) ¹¹⁾	3-[Benzotriazolyl-(1)]-s-triazolo- [3.4-alisochinolin (3c)	30	248°	$C_{16}H_{10}N_6$ (286.3)	Ber. Gef.	67.12 67.02	3.52 3.90	29.36 29.67
2-Chlor- pyrimidin (2d) ¹²⁾	2-[Benzotriazolyl-(1)]- pyrimidin (3d)	50	154°	$C_{10}H_7N_5$ (197.2)	Ber. Gef.	60.90 60.96	3.58 3.81	35.52 35.75
2-Chlor-3-methyl- pyridin (2 e) ¹³⁾	3-Methyl-2-[benzotriazolyl- (1)]-pyridin (3e)	50	$68 - 70^{\circ}$	$C_{12}H_{10}N_{4}$ (210.2)	Ber. Gef.	68.55 68.21	4.79 4.73	26.65 26.66
2-Chlor-4-oxo-9-methyl-4 <i>H</i> - pyrido[1,2- <i>a</i>]pyrimidin (2f) ¹⁴⁾	4-Oxo-9-methyl-2-[benzotriazolyl- (1)]-pyrido[1.2-a]pyrimidin (3f)	20	244°	C ₁₅ H ₁₁ N ₅ O (277.3)	Ber. Gef.	64.97 64.45	4.00 4.37	25.26 24.92
2.4.6-Trichlor- s-triazin (2 g) ¹⁵⁾	2.4.6-Tris-[benzotriazoly]- (1)]-s-triazin (3g)	80	350°	$C_{21}H_{12}N_{12}$ (432.4)	Ber. Gef.	58.33 57.97	2.80 3.05	38.87 39.00
5-Chlor-3-methoxy- pyridazin ¹⁶⁾	6-Hydroxy-3-[benzotriazolyl- (1)]-pyridazin (3h)	10	270°	C ₁₀ H ₇ N ₅ O (213.2)	Ber. Gef.	56.33 55.97	3.31 3.70	32.85 32.87
5-Chlor-3-phenyl- 1.2.4-oxadiazol (21) ¹⁷⁾	3-Phenyl-5-[benzotriazolyl- (1)]-1.2.4-oxadiazol (31)	72	145°	$C_{14}H_9N_5O$ (263.3)	Ber. Gef.	63.87 63.67	3.45 3.70	26.61 26.72
4-Chlor-thieno[3.2- <i>c</i>]- 2yridin (2 k) ¹⁸⁾	4-[Benzotriazoly]-(1)]-thieno- [3.2-c]pyridin (3k)	16	140 — 142°	$C_{13}H_8N_4S$ (252.2)	Ber. Gef.	61.90 61.86	3.20 3.32	22.21 22.50
2-Chlor- cenzimidazol ¹⁹⁾	2-[Benzotriazoly]-(1)]- benzimidazol (4a)	50	250°	C ₁₃ H ₉ N ₅ (235.2)	Ber. Gef.	66.37 66.27	3.86 3.95	29.77 30.09
2-Chlor-1-methyl- cenzimidazol ²⁰⁾	1-Methyl-2-[benzotriazolyl- (1)]-benzimidazol (4b)	50	154°	C ₁₄ H ₁₁ N ₅ (249.3)	Ber. Gef.	67.45 67.34	4.45 4.70	28.10 27.87
2-Chlor-1-benzyl- 5enzimidazol ²⁰⁾	1-Benzyl-2-[benzotriazolyl- (1)]-benzimidazol (4c)	60	144°	C ₂₀ H ₁₅ N ₅ (325.4)	Ber. Gef.	73.83 73.46	4.65 4.74	21.53 21.42

Tab. I. Ausbb., Schmpp. und Analysenwerte der dargestellten 1-substituierten Benzotriazole 3 und 4

Produkt	UV-Absorptionen (in Äthanol) nm (e)	IR-Absorptionen (KBr) (cm ⁻¹)
3a	324 (12600); 218 (36400)	1503; 1072; 964; 742
b	318 (15800); 267 (8400)	1628; 1542; 1468; 1428; 1029; 747
с	332 (9600); 304 (10400); 292 (10500)	1550; 1051; 785; 742; 693
d	300 (12000); 260 (13200)	1569; 1460; 1428; 1288; 741
f	360 (7700); 346 (7200); 308 (19000); 259 (18900); 234 (14700)	1691; 1041; 810; 750
g		1600; 1562; 1455; 1290
b	307 (10 500)	3422; 1680; 1597; 99 5 ; 747
	302 (8880); 269 *) (8840); 238 *) (32250)	1625; 1460; 1430; 1350; 1325; 1025; 750; 728
k	315 (11400); 296 (10000); 230 (32500)	1526; 1480; 1450; 1220; 1105; 1050; 833; 747
4 a	315 (8330); 280 (6600); 272 (6200); 233 (13000)	3310; 1567; 1290; 1065; 747
b	305 (9350); 280 (9500); 275 (8800); 222 (17000)	1533; 1373; 1298; 1032; 747
с	304 (11700); 281 (13400); 275 (12700); 226 (28000)	1533; 1066; 752; 720; 696
*) Schulter.		

Tab. 2. UV- und IR-Absorptionsmaxima von Benzotriazolyl-(1)-Derivaten

'ab. 3. Ausbb.	. Schmpp.	und Anal	vsenwerte de	er Photolys	enrodukte

Produkt	Ausb.	Schmn	Summenformel		Elementaranalyse		e
FIOUUKI	(%)	seninp.	(MolGew.)		С	н	Ν
Benzimidazo[1.2-a]-	25 (76)*)	310°	C13H9N3	Ber.	75.34	4.38	20.28
benzimidazol (5a)			(207.2)	Gef.	74.73	4.70	19.86
5-Methyl-benzimidazo-	30 (58)*)	154°	$C_{14}H_{11}N_3$	Ber.	75.99	5.01	18.99
[1.2-a]benzimidazol (5b)			(221.3)	Gef.	75.98	5.20	19.15
5-Benzyl-benzimidazo-	30	144°	$C_{20}H_{15}N_3$	Ber.	80.78	5.09	14.13
[1.2-a]benzimidazol (5c)			(297.3)	Gef.	80.52	4.94	14.35

*) UV-spektroskopisch bestimmt 2).

Tab. 4. UV- und IR-Absorptionsmaxima der Photolyseprodukte

Produkt	UV-Absorptionen (in Äthanol) nm (ε)	IR-Absorptionen (KBr) (cm ⁻¹)
5a	304 (6700); 285 (17600); 238 (60000)	2701 (brcit); 1647; 1574; 1501; 1219; 736
5 b	304 (8200); 288 (19000); 238 (62600)	1647; 1569; 1505; 739; 728; 709
5 c	304 (6600); 287 (16700); 239 (57500)	1638; 1567; 1499; 736

Tab. 5. Ausbb.,	Schmpp. und	d Analysenwerte o	der Thermol	yseprodukte

Produkt	Ausb. (%)	Schmp.	Summenformel (MolGew.)		Elementa C	ranalyse H	N
s-Triazolo[2'.3' : 3.2]pyrimido- [1.6- <i>a</i>]benzimidazol (7)	60	216°	C ₁₁ H ₇ N ₅ (209.2)	Ber. Gef.	63.15 62.87	3.37 3.48	33,48 34.01
Benzimidazo[1'.2' : 1.5]triazolo- [3.4-a]isochinolin (8)	30	270°	$C_{15}H_{10}N_4$ (246.3)	Ber. Gef.	74.15 74.25	4.09 4.18	22.75 21.90
Pyrimido[1.2-a]benzimidazol (9)	60	192°	C ₁₀ H ₇ N ₃ (169.2)	Ber. Gef.	70.99 70.70	4.17 4.24	24.84 24.91
2-Hydroxy-pyridazino- [1.6-a]benzimidazol (10)	50	325°	C ₁₀ H ₇ N ₃ O (185.2)	Ber. Gef.	64.86 64.59	3.81 4.06	22.69 22.79

Tab. 6.	. UV-	und	IR-Absorptionsmaxin	ma der	Thermolyseprodukte
---------	-------	-----	---------------------	--------	--------------------

Produkt	UV-Absorptionen (in Äthanol) nm (ε)	IR-Absorptionen (KBr) (cm ⁻¹)
7	336 (6400); 320 (13600); 310 (14000); 248 (30000); 243 (38000); 233 (39000)	1638; 1432; 1162; 761; 742; 692
8	278 (28 500); 238 (27900); 223 (31400)	1649; 1559; 1213; 789; 730
9	365 (2400); 320 (6100); 245 (41 500); 205 (23 500)	1620; 1604; 1498; 1455; 1420; 1319; 767
10	315 (10100)	3378; 1448; 1428; 833; 744; 730

NMR-Spektrum von **10** (CF₃CO₂D): Pyridazinring: τ 2.92 (d; 3-H), 1.93 (d; 4-H), Verhältnis 1 : 1, J = 9.8 Hz; Phenyl: τ 2.1 (m) und 2.5 (m), Verhältnis 2 : 2. 1 Proton wird ausgetauscht.

Thermolyse von 3d in 1-Methyl-naphthalin unter Säurekatalyse: Zur Emulsion von 0.6 g (30.0 mMol) Polyphosphorsäure und 0.6 g (22.5 mMol) Phosphorsäure-tributylester in 5 g 1-Methyl-naphthalin gab man 0.19 g (1.0 mMol) 2-[Benzotriazolyl-(1)]-pyrimidin (3d) und erwärmte, wobei eine klare Lösung entstand. Bei 135° setzte die Stickstoffentwicklung unter Abscheidung eines gelben Niederschlages ein. Die Lösung wurde bis auf 200° Badtemp. erwärmt und nach 30 Min. auf Wasser gegossen. Man neutralisierte mit verd., wäßrigem Ammoniak und extrahierte mit Äther/Benzol (1:1). Nach Abdampfen der Solventien kristallisierte das Rohprodukt in der Kälte aus 1-Methyl-naphthalin. Aus Äthanol 75 mg (42%) 9, Schmp. 196°. Identifiziert durch IR-Vergleich.

Erhitzen von 3d in 1-Methyl-naphthalin ohne Säurezusatz: Nach 3 Stdn. Erhitzen in siedendem 1-Methyl-naphthalin wurde 3d praktisch quantitat. zurückgewonnen. Bei Zugabe von Polyphosphorsäure zur Lösung von 3d in 1-Methyl-naphthalin bildeten sich zwei Phasen, die sich auch beim Siedepunkt nicht mischten. 3d wurde nach 3stdg. Erhitzen unter Rückfluß quantitat. zurückgewonnen.

Pyrolyse von 3d in siedendem Biphenyl: 0.19 g (1.0 mMol) 3d wurden in 10 g Biphenyl 3 Stdn. in einer Stickstoffatmosphäre unter Rückfluß erhitzt, Biphenyl abdestilliert und der Rückstand in heißem Methanol aufgenommen. In der Kälte kristallisierten 0.14 g 3d aus. Im Dünnschichtchromatogramm des schwarzen, viskosen Eindampfrückstandes wurden Ausgangsprodukt, wenig Biphenyl, undefinierte Zersetzungsprodukte und Spuren von Pyrimido[1.2-a]benzimidazol (9) nachgewiesen.

Pyrolyse von **3d** *in Phenanthren:* 0.19 g (1.0 mMol) **3d** wurden in 5 g Phenanthren 3 Stdn. unter Stickstoff auf 280° erhitzt. Danach wurde Phenanthren i. Vak. abgezogen. Aus dem teerigen Rückstand konnte keine kristalline Verbindung abgetrennt werden.

Spaltung von 3-Phenyl-5-{benzotriazolyl-(1)}-1.2.4-oxadiazol(3 i) in Polyphosphorsäure: 1.0 g (2.5 mMol) 3 i in 10 ccm Polyphosphorsäure wurden in einem Bad von 150° 30 Min. erhitzt, wobei keine Gasentwicklung beobachtet wurde. Danach goß man auf Wasser, neutralisierte mit Ammoniumhydroxid und filtrierte. 10 mg 5-Oxo-3-phenyl-4.5-dihydro-1.2.4-oxadiazol (13), Schmp. 196° (Lit.⁷⁾: 196°), IR-Vergleich mit authent. Produkt⁷⁾.

Imino-bis-[benzotriazolyl-(1)]-methan (14): Zu 0.24 g (10 mMol) Natriumhydrid in 20 ccm Dimethylsulfoxid gab man 1.19 g (10 mMol) Benzotriazol (1) in 10 ccm Dimethylsulfoxid. Nach Aufhören der Wasserstoffentwicklung fügte man tropfenweise 1.06 g (10 mMol) Bromcyan in 10 ccm Dimethylsulfoxid unter Eiskühlung zu, goß danach auf Eis/Wasser, filtrierte ab und kristallisierte aus Äthanol um. 0.31 g (12%), Schmp. 180°.

IR (KBr): 3445, 3235, 1695, 1460, 1290, 1160, 1030, 935, 847/cm.

UV (Äthanol): 282 (ɛ 6920) und 253 nm (13800).

C13H9N7 (263.3) Ber. C 59.31 H 3.45 N 37.25 Gef. C 59.21 H 3.78 N 37.17

[137/70]